Postantibiotic Effects and Bactericidal Activities of Levofloxacin and Gatifloxacin at Concentrations Simulating Those of Topical Ophthalmic Administration against Fluoroquinolone-Resistant and Fluoroquinolone-Sensitive Methicillin-Resistant Staphylococcus aureus Strains

Saichi Hoshi,1,2 Ken Kikuchi,1,* Takashi Sasaki,1 Chie Sotozono,2 Shigeru Kinoshita,2 and Keiichi Hiramatsu1

Department of Infection Control Science, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan,1 and Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan2

Received 13 November 2007/Returned for modification 23 February 2008/Accepted 9 May 2008

The bactericidal activities and postantibiotic effects (PAEs) of levofloxacin and gatifloxacin at concentrations corresponding to those in antibiotic eye drops against methicillin-resistant Staphylococcus aureus strains were determined. Levofloxacin and gatifloxacin at concentrations simulating those in eye drops showed lower bactericidal activities and shorter PAEs against fluoroquinolone-resistant strains than against fluoroquinolone-sensitive strains.

Ocular infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains, which are clinically serious and difficult to treat, have been reported (18, 27–30, 34). The prevalence of levofloxacin (LVX) resistance in MRSA strains isolated from patients with ocular infections is 80 to 90% in Japan and the United States (12, 14, 17). Topical treatments may have selected for strains with high-level fluoroquinolone resistance (1, 8, 10, 14, 17), which is associated with multiple mutations in the quinolone resistance-determining regions (QRDRs) of MRSA strains isolated at ophthalmologic clinics (10). Although topical fluoroquinolone eye drops contain much higher concentrations (0.3 to 1.5%; equivalent to 3,000 to 15,000 μg/ml) than their MICs even against strains with high-level fluoroquinolone resistance, the antibiotic concentrations in tear films decline rapidly (by about 1/100 at 30 min) (31), and treatment failures have been noted (6, 33). We performed time-kill and postantibiotic effect (PAE) studies with LVX and gatifloxacin (GAT) at concentrations simulating those in eye drops to examine the

TABLE 1. Fluoroquinolone susceptibilities and mutation profiles of MRSA strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (μg/ml)</th>
<th>Type of LVX resistance</th>
<th>Amino acid or nucleotide change in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OXA</td>
<td>LVX</td>
<td>LVX + reserpine</td>
</tr>
<tr>
<td>JCSC 6763</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>JCSC 6764</td>
<td>512</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>JCSC 6765</td>
<td>256</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>JCSC 6766</td>
<td>512</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>JCSC 6767</td>
<td>256</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>JCSC 6768</td>
<td>256</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>JCSC 6769</td>
<td>512</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>JCSC 6770</td>
<td>256</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>JCSC 6822</td>
<td>128</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* Corresponding author. Mailing address: Department of Infection Control Science, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: 81-3-3813-3111, ext. 3822. Fax: 81-3-3816-2782. E-mail: kikuti@med.juntendo.ac.jp.

Published ahead of print on 19 May 2008.

---

* No changes were detected in grlB.

Portion of the norA gene from nucleotides 305 to 476 encompassing the −35 and −10 sequences in the promoter region representing the transcriptional start site described by Yoshida et al. (35)
efficacies of these drugs. We examined nine typical Japanese health care facility-associated MRSA strains: staphylococcal cassette chromosome mec type IIa (3, 13, 22, 24) strains with high-level LVX resistance (LHR; MICs, >64 μg/ml), low-level LVX resistance (LLR; MICs, 4 to 32 μg/ml), or LVX sensitivity (LS; MICs, ≤1 μg/ml). Cation-adjusted Muller-Hinton II broth (CAMHB; BD, Sparks, MD) and Mueller-Hinton agar (BD) were used for determination of the MICs, time-kill profile analyses, PAE assays, and viable count assays. MICs were measured by broth microdilution methods and were interpreted according to the recommendations of the Clinical and Laboratory Standards Institute (4). To elucidate the contribution of efflux mediated by NorA to fluoroquinolone resistance, the MICs of LVX and GAT were determined in the presence or absence of 20 μg/ml reserpine, which is a multidrug transport inhibitor (21). The QRDRs and norA promoter regions were sequenced as reported previously (10, 20, 21, 35). Time-kill assays were performed according to previously published
Bactericidal activity was defined as a
24 h. Serial 10-fold dilutions in sterile saline were plated, and were taken at 0 min, 5 min, and 30 min and at 1, 2, 4, 6, and 24 h. Serial 10-fold dilutions in sterile saline were plated, and the colonies were counted after 48 h of incubation at 37°C (19).

guidelines (19). LVX and GAT were used at 4
MIC dosages of antibiotics following brief exposure to a high concentration of fluoroquinolones can cause corneal perforations in humans (7, 16, 32). We did not investigate how the growth-inhibitory effects of long-duration supra-MIC and sub-MIC dosages of antibiotics following brief exposure to a high concentration of the antibiotic affected the antibacterial responses. Further studies are required to determine the usefulness of these two antibiotics in topical formulations (eye drops) in different in vitro simulation models that reproduce the pharmacokinetic-pharmacodynamic properties of the antibiotics in the human eye when they are administered on traditional dosing schedules.

This work was supported by a Grant-in-Aid for 21st Century COE Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan.

REFERENCES


